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mpilel direte activities, and o head form the basis for the

lJ algorithms using deadlock avoidance and deadlock detection and recovery synthetic workload model that is used here. The sLnulation program
techniques dei; d by Chandy ad Mi have been performed using the consists of some number of logical processes, each of which models some
BBN Buterfly multiprocessor. Experiments using synthetic workloads portion of the system being simulated. For example, in simulating a digital
reveal that the degree to which processes can look ahead in simulated time logic network, each gate (or some collection of gates) could be modeled by
plays a citical role in the performance of distributed simulators using a logical process. Logical processes communicate exclusively by
these algorithms. These results are applied to a queueing network exchanging umestamped messages. Messages typically correspond to
simulation where as much as an order of magnitude improvement in events that trigger a change in system state. Each logical process must
performance is observed if the distributed simulator is programmned to fully process incoming messages in non-decreasing timestamp order to ensure
exploit the lookaead available in the application. Performance that cause-and-effect relationships are faithfully reproduced by the
maeasurements of several hypercube-based communication network simulator.
simulators provide additional empirical data to suppor these claims. We informally define an activity as a sequence or thread of events that
These results demonstrate that substantial improvements in performance propag lamong the logical processes in the simulation. These eventsreobtainable if the application can be programmed to have good propagtsaogtelgclpoe.s ntesmlto.Teeeet
lookaead characteristics. On the other hand, other applications iherently model some sequence of cause-and-effect relationships in the system being
oan chraeristics.nte o e r and, oher applicti o heey simulated. For example, in a logic simulation, individual events are logicmcontain poor lookahead properties, and appea to be ill a&d for these signal transitions and each activity corresponds to a signal propagating

simulation algorithms. i , .. r,, 4 .... through a sequence of logic gates. In a queueing network simulation, each
, r activity corresponds to a job traveling through the network. Actiities are

1.lnlductlon usually dynamic. A new activity is created in the logic simulation
Discrete event simulation has long been a task with computation whenever an existing activity reaches a fanout point in the network. The

requirements that challenge the fastest available computers. For example, activity disappears when (for instance) it reaches an AND gate with a logic
simulations of communication networks, parallel computer architectures, zero on one of the other input lines. For our purposes, this informal
and battlefield scenarios often require hours, days, or even weeks of CPU definition of activities and logical processes will suffice.
time using traditional, single processor techniques. Simulator performance Logical processes often "look ahead" into the simulatee. time future to
may be improved using vectorizing techniques [Chang3a], processors schedule new events. For example, upon receiving a signal transition
dedicated to specific simulation functions (ComfS4a, execution of event in a logical process for an inverter gate, the process can predict and
independent trials on separate processors [Bile85a], or the execution of a schedule a new event (a signal transition at the output of the gate) one gate
single instance of a simulation program on a parallel computer. The last delay later in simulated time. The lookahead abilities of the process
technique. referred to as distributed simulation, is the subject of this paper. determine how readily it will schedule new events. Processes such as the

Simulation would initially appear to be a natural candidate for parallel inverter with good lookahead abilities can "see" sufficiently far into the
processing because many of the aforementioned applications contain a future that "effect" events can be scheduled as soon as the "cause" event
high degree of parallelism. However, the exploitation of this parallelism is is received. On the other hand, processes with pror lookahcad ability must
elusive because the global notion of simulated time does not easily map first wait until simulated time is advanced before they can schedule the
onto a distributed computer. This property distinguishes distributed effect evenL For example, in a queueing network simulation with
simulation from other forms of parallel computation, prioritized jobs, the "departure" event for a low priority job cannot be

Several schemes have been proposed to solve this problem. A survey of scheduled until it is first determined that no higher priority job will
the literature has been reported by Kaudel [Kaud87a]. One important class preempt it.
of dismbuted simulation algorithms is the so-called "conservative" Quantitatively, lookahead is defined as follows: if a process has
mechanisms. Chandy and Misra developed a mechanism based on a knowledge of all events that will occur up to simulated time T, and can
deadlock avoidance technique where null messages are used to distribute predict all new events it will generate with timestamp T+ L or less, then
clock information among the processes taking pars in the simulation the process is said to have lockahead L. In general, lookahead is a
[Chan79a, Misr86a]. Another mechanism, also developed by Chandy and complex function that varies with time and the type of event and is highly
Misra, is based on a deadlock detection and recovery paradigm - the dependent on details of the simulation problem and the way it is
simulator runs until deadlock, the deadlock is detected, and an algorithm is programmed. A process can schedule a future event so long as the
executed to break the deadlock [Chan8la, Misr86a]. Other approaches to timestamp on that event is less than or equal to the process's local clock
distributed simulation have been proposed, notably the Time Warp plus its lookahead. Such events are said to be within the "lookahcad
approach proposed by Jefferson [Jeff85a], but the work discussed here will horizon" of the process.
be confined to deadlock avoidance and deadlock detection and recovery Consider a "cause" event with timestamp T., that leads to an
techniques. "effect" event with timestamp Tf,.. The absolute value of lookahead is

In [FujiS8a] several experiments using synthetic workloads were not as important as the lookaead relative to T%, - T.,,, because this
described that were designed to evaluate the effectiveness of distributed will determine how far the process must advance in simulated time to
simulation strategies using the deadlock avoidance and the deadlock generate the new event. Therefore, we define a quantity referred to as the
detection and recovery algorithms. These experiments were performed on lookahead ratio (LAR):
a distribted simulation testhed that was umplemented on the BBN
Butterfly, a shared-memory multiprocessor. Here, we apply these LAR -
results to specific application problems to provide empirical data to support look ad
these results. In particular, parallel simulations of queueing networks and A low (e.g., 1.0) LAR corresponds to a high degree of lookahead.
the communication subsystem of a hypercube'based multicomputer
demonstrate the relationship between lookahead in the simulation 3. The Distributed Simulation Tetlbed
application and performance of the parallel simulator. An I8 processor BBN Butterfly multiprocessor was used for

"this wo& .as hiipoed by ONR wotact ,numbcr N0001457.K.0184 'SF ,.t experimentation. Each processor node contains a 16 M)-z MC68020 with
numibet DCR 504826 MC68881 floating point coprocessor, I to 4 MBytes of memory, and a
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Table 1. Hardware Parameters many processes as possible. This algorithm is described in (ChanSlal. It
Execution Time was found, however, dio the additional time required to execute this

Operation (microseconds) algorithm yielded a net loss in performance. The performance figures
Loecal memiory refernce 0.60 reported here we band an the former deadlock recovery approach.

Remote memory reference 4.0 43 Unlprocessor Simulation Al2orithri
Register-to-register insuction 0.71
16 bit Load (Local Memory) 1.3 Finally, a single processor, event list simulator was developed to allow
16 bit Load (Remote Memory) 6.3 comparison of distribled simulation pograms with sequential event list
Paametaess function call 6.9 implementations. In order to obtain a fair comparison, the uniprocessor
Atomic inclusive OR 20 simulator was constructed by modifying the distributed simulator. Both

implementations maintain the same overall sticture, organization,
poesornode o'oilerNC), a micrcoded engneh po e o programming style, and conventions. All code specific to parallel

processor~ mode cotole (Q a ircddegn ta rcse oa computation (e.g. synchronization lok)was eliminated.and refmote memory requests. The inteconnection swtc is conifigured as op io(e..ocns onok)waeln e.

an Omep network. Atomic test-and-set like memory op os ae also The event list was implemented as a splay nee [Sla85a]. Empirical
implemented in the PNC. Execution times of various instructions and evidence suggests that splay trees are among the fastest methods for
operations are shown in table I. Experimental data indicate that switch implementing an event list (Jone86a]. An alternative implementation
contention, and hot spot congestion in particular, is unlikely [Thom8l6a]. using a singly linked linear list was also developed. It was found that this

Each processor executes a single operating system process. This implementation yielded performance comparable to the splay tme for small

process is a scheduler that time multiplexes execution of the simulation simulations buth as expected ran much more slowly for the larger

processes mapped to the processor. This strategy avoids excessive context s The splay tree implementation is used in all comparisons with
switching overhead, and allows more direct control over die process uniprocessor simulations reported here.

scheduling mechanism. Asynchronous message passing primitives were 4A Performance Metrics
constructed using direct memory accesses to the mailbox in the receiving
simulator process. Only a few simple Butterfly primitives, namely lock Three metrics are defined to evaluate the performance of the distributed
and atomic-add operations, are used by the testbed after initialization is simulation programs:
complete. * Speedup. SU(n), the speedup using n processors, is defined as the

execution time of the single processor, event list implementation using a
4. The Simulation Aleorithms splay tree divided by the execution time of the distributed simulation

Two distributed simulation algorithms were implemented in the testbed: program when n processors are used.
one based on deadlock avoidance and another based on deadlock detection 9 Null Message Ratio. NMR is defined as the number of null messages
and recovery. The shared memory architecture of the Butterfly was used processed by the simulator using deadlock avoidance divided by the
o improve the efficiency of these algorithms, as described below. A single number of real (non-null) messages processed. This measures the

processor, event list implementation was also developed in order to overhead of the deadlock avoidance approach.
compute speedup. c Deadlock Ratio. DR is the number of messages processed by the
4.1 Deadlock Avoidance Strategv distributed simulator using deadlock detection and recovery, divided by

the number of deadlocks that occur. This figure measures the efficiency
The deadlock avoidance scheme developed by Chandy and Misra was of the deadlock detection and recovery algorithm.

implemented first. Each logical process sends a null message to each of its
neighbors whenever it blocks. The timestamp on this message represents a The single processor execution times were obtained by running the splay
lower bound of the timestamp on any message that will be sent to the tee simulator on a ingle node of the Buterly. The same compiler as that

receiver in the future. It is equal to the local clock value of the process used by the distributed simulator was used. Therefore, compiler and
plus the lookahead value because, by definition, the process cannot predict processor speed dependencies are factored out of the speedup figures.
the occurrence (or non-occurrence) of events further into the future. The experiments were performed with no other applications running on
Chandy and Misra have shown that this approach is sufficient to avoid the Butterfly. Facilities, such as the window manager, were run on
deadlock [Chan79a]. processors different from those executing the simulation program. These

In the iestbed, one optimization was performed to streamline the measures were taken to minimize interference with the computation.

processing of null messages. Rather than enqueueing each null message Experimental data were, for the most part, well behaved. The 95
sent to another processor, a single variable is associated with each input percent confidence intervals for the measured data were typically less than
link that contains the timestamp of the last null message that was received, one or two percent of the reported value. Only in a few instances were
This avoids unnecessary enqueue and dequeue operations and leads to significant variations observed from one measurement to another. These
more efficient memory utilization, were related to the avalanche effect described later, and do not affect the

conclusions that follow from these experiments.
4.2 Deadlock Detection and Recovery Straterv

The second simultion approah is ba d on deadlock detection and S. Experiments Usint Synthetic Workloads
recovery. The simulation runs until deadlock, the deadlock is detected, Synthetic workloads were constructed based on the notions of logical
and an algorithm is initiated to break the deadlock (ChanSla]. A central processes, activities, and lookahead, described earlier. Workloads
controller is used to coordinate the deadlock recovery procedure. contained 16 and 64 logical vrocesses organized in 4 by 4 and 8 by 8

Deadlock in the testhed is easily detected by maintaining a global toroids, respectively (a toroid is a nearest neighbor mesh with wrap-around

counter indicating the number of processes that are either scheduled or edge connections). Toroids were used because they do not contain

nining. The system is deadlocked whenever the counter reaches zero and inherent bottlenecks that might color the results. and because they am rich
there is t least one pcess that has not yet terminated (othwi, th in cycles, and therefore represent a reasonably challenging configurationfor the simulation algorithms. It is assumed that the number of activities in
computation has terminated). Each scheduler checks the deadlock counter the simulation remains constant, and the lookahead of each process
whenever it fails to find a process to run, and initiates a computation to remains fixed throughout the simulation and does not depend on the type
break the deadlock if it finds the counter is zero. of event. Within each experiment, a fixed number of messages (the

The deadlock recovery algorithm locates the message in the system with message population) circulates in a manner similar to jobs traveling
the smallest timestamp and arranges for it to be processed next. A throughout a closed queueing network. Simulation activity in each process
distributed algorithm is used to perform this computation. A central was emulated using busy wait loops.
controller is used to coordinate this activity. By convention, the scheduler The experiments discussed next assume a message population of four
executing on PE 0 acts as the controller. messages per process and an average computation time of I milltsecond

An alternative deadlock recovery algorithm was also implemented in (selected from a random variable with a negative exponential distribution)
which messages are propagated throughout the system in order to restart as to process each incoming message. A static process to processor mapping
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Figure 1. Speedup of synteic workload as lookahead is vared. Message Population (Messages per Process)

Figure 2. Message avalanche occurs as the message population is increasc-1

6. Poese with Different oAheads

was used that balanced the workload assigned to the available proessoss hD La

while minimizing interprocessor communications. ' The experiments described above used homogeneous workloads where

Numrou exerient wee cndcte toexainetheeffctsof each process behaved in the sme way as the others. Many realin er oceosimulations contain a variety of logical processes with different lookaad
computaton granularity, dynamic load balancing, message population, characteristics. Additional experiments were performed in which some
message routing, and other factors. A detailed description of these m ts pcs
is beyond the scope of the present discussion, but is described elsewhere Thesesper descred ares hogeeushers h

[Fuji87aFuji88a. We will summarize some of these results and discuss Figures 3 and 4 show simulaor overhead for the deadlock detection and
Now they pan be applied to a specific applicatione recovery, and deadlock avoidance simulators, respectively, when some

number of processes with poor looihead charactristics are mixed with
5.1 Effect of Lookahea processes with doad loskahead charspcanrc scs. Experiments were

performed in which one, one fourth, one half, and finally all processesThe speedup curves in figure show the effect of varying ionokahead in have po hoorkahad (high LAR). Figure 3 indicates at the presence of a
the deadlock avoidance simulator. As can be seen, lookahead plays a few processes with poor ookahead results in a perceivable performance
critical role in determining simulator performance. Perfortance degrades degradation in the deadlock detection and recovery simulator (the
significantly as the iookahead bility of each process is reduced. Processes rvalanche point is moved to higher message populations). When a
with poor lookahead characteristics must delay generating new events, significant fraction of the process have poor l ookahead performance is
reducing the amount of parallelism available in the simulation almost the same as that when all processes have poor lookahead. The

Performance of the 16 node toroid is somewhat less than the 64 node deadlock avoidance simulator was found ot to he as susceptible to such
toroid because the simulation does not conn sufficient parallelism to behavior (see figure 4) though some degradation results if a sufficiently
keep all of the processors busy. In addstion, as the number of processes high fraction have poor lookahead properties.

per processor is decreased, each process is afforded less time to collect
messages before it is executed by the scheduer. As a result, a process may 6. Oueueine Ne k Simulations

be scheduled more often than if there were more processes mapped to the To illustrate the applicability of the above results in a specific
processor. The additional scheduling overhead and increased idle ime application, queueing network simulations were performed. A five
lead to poror mance in the 16 node simulator, particularly as the process, central server network was simulated on the testbed. As shown
number of processors is increascd figure 5, this network contains three first-comefirst-serve (FCFS)

processes that service incoming jobs in the order in which they arrive, a
5.2 Messaae Avalanche fork process that stochastically routes each incoming job to one of its

Experiments using the deadlock detection and recovery strategy also output ports (assume for now that either port is equally likely to be
revealed an "avalanche" phenomenon. This behavior is depicted in figure selected), and a merge process that combines streams of incoming jobs into
2 where the deadlock ratio is plotted as a function of the message a single output stream. Each server process also computes the average
population. Performance remains poor (only a few messages processed number of jobs in the server and reports this figure to the user.
between deadlocks) at low and moderate message populations, but then Simulation and empirical studies by Seethalakshmi and Reed
increases dramatically once message population reaches a certain critical respectively concluded that the central server network is ill-suited for the
level. It was found that message avalanche was a prerequisite for conservative distributed simulation algorithms discussed here
achieving good performance for this simulation strategy. [Seet79a, Reed88a]. We reproduce and explain the poor results that these

researchers observed in terms of message population and lookahead, andMessage avalanche occurs when a message arriving at a process causes utilize this knowledge to imprve i~rane
the transmission of one or more additional messages, which in turn trigger kwd to r '

the transmission of still others, and so on. A multiplicative effect occurs The "classical" implementation of the FCFS process uses two types of
whereby an "avalanche" of message traffic results from the original, events: arrival events (scheduled by other processes) denote jobs arriving
accounting for the dramatic improvement in simulator efficiency, at the server, and departure events (scheduled by the FCFS process itself)

As shown in figure 2, the message population required to induce denote jobs completing service. The actions executed by the server
avalanche was found to be dependent on the lookahead ability of the process for each event type are shown in figure 6. NJobs indicates the
aprocse. Salle oputio n de reequire the i duc avltynfche i number of jobs currently residing in the server, and ServiceTime indicatesprocesses. Smaller populations were required to induce avalanche if the time required to service each job. Code for computing statistics is not
processes were able to see far into the simulated future. This is again shown.
because poor lookahead characteristics reduce the amount of parallelism in
the simulator. The classical server process has very poor lookahead properties. This is

because it will not transmit an arrival event message with timestamp TS
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Figure 5. Central server queueing model.

ARRIVAL EVENT at TIME T:
0.25 1 4 16 64 256 NJobs:- NJobs + 1;

Messages Per LP IF (NJobs = I) THEN /0 if server was previously idle '/

Figure 3. Overhead with non-utuform lookshead - deadlock r Schedule (local) Departure Event at time T + ServiceTime:

Null Message Ratio with Non-Uniform Lookahead DEPARTURE EVENT at TIME T:
NMR Deadlock Avoidance Strategy Schedule (remote) Arrival Event at time T;
1000 NJobs := Njobs - l

IF (NJobs > 0) THEN /0 if job(s) waiting in queue */
Schedule (local) Departure Event at time T + ServiceTime:

100 Figure 6. "Classical" program for FCFS server (poor lookahead).

ARRIVAL EVENT at TIME T:
10 IF (T < EndService) THEN /0 if server busy /

BEGIN
,No Us wh Schedule (remote) Arrival Event at time EndService+SericcTjmr,

ulh tAR t4) ,EndService := EndService + ServiceTime;
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0.25 1 4 16 64 Figure 7. Optimized program for FCFS server (good lookahead).

Messages Per LP
Figure 4. Overhead with non-uniformn lookalead - deadlock avoidance, those studies are a variation of the classical server described above, and

until it has first advanced its local simulated time clock to TS by share the same (poor) lookahead properties - a message will not be
processing a departure event. In effect, it has a lookahead value of zero. forwarded until another message is first received with a timestamp at least

The lookahead properties of the FCFS process can be improved by as large as the departure time of the first. Therefore, lookahead provides
eliminating the departure event, and generating a new arrival event as soon an explanation for the poor performance that they observed.
as one is received. Because an FCFS queueing discipline is used, the Although the above results are encouraging, it is important to keep in
departure time can be determined as soon as the message is received. The mind that reprogramming the application to exhibit greater Iookahead
optimized program is shown in figure 7. EndService denotes the time at ability is not always possible. The above optimization relied on the servers
which the server process will become idle if no additional jobs we using an FCFS scheduling discipline. As we shall soon see, many
received in the future. This program exhibits very good lookahead abilities applications inherently ontain poor lookahead properties.
because it can schedule events far into the simulated time future.

Finally we note that, at first glance, reprogramming logical processes to
6.1 Performance Using Identical Servers maximize lookahead may complicate other aspects of the simulation, e.g.,

Sinulators using each of these server programs were developed a statistics collection. For example, the optimized server does not pause for
executorsthe utterfl e hed.Inall of theesv p m eperen desednd departure events, so statistics that are most easily collected at job departure

executed on the Butterfly testbed. In all of the experiments described must be collected at other points in simulated time. This problem is easilybelow, each logical process was mapped to a separate processor, and static reconciled by scheduling local departure events (as was done before) that
scheduling was used. Service times for server processes were selected are only used for statistics collection purposes.
either deterministically or from a random variable with a negative
exponential distribution. 6.2 Performance Usint Mixed Servers

The resulting spedup and simulator efficiencies for the central server Additional experiments were performed to examine the effect of mixing
queneing model using the deadlock detection and recovery strategy are processes with poor and good lookahead characteristics. Recall that
shown in figures 8 and 9, respectively. The deadlock avoidance simulator experiments using synthetic workoads revealed that a small number of
yielded similar speedups. As can be seen, reprograrming the server to processes with poor Iookahead could significantly degrade performance of
have better Icokahead characteristics dramatically improves performance. the deadlock detection and recovery simulator. The deadlock avoidance
Speedup is improved by as much as an order of magnitude. These results simulator was found not to be as susceptible to such behavior.
are consistent with those obtained using synthetic workloads, The central server queueing network simulations were repeated where

The performance results of the classical server process are qualitatively one of the three servers was implemented using the classical server
similar to those repored by Reed and Seethalakshmi. The servers used in
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Figure 9. Overhead of central server queueing network simulator. Figure 11. Overhead of detection and recovery simulator wit one classical server

program described earlier, and the remaining servers used the optimized Speedup and overhead curves for the deadlock avoidance simulator are
program. The resulting simulator is not unlike one that would result if one shown in figures 12 and 13. The deadlock avoidance simulator tends to be
of the servers was (say) a prioritized queue while the others wereC CFS. more forgiving of processes with poor lookahead. Poor performance

The speedup and efficiency of the deadlock detection and recovery results when the central server process has poor iookahead. However,
simulator is shown in figures 10 and 11. When the central server (the performance begins to approach that of the optimized simulator in some
process receiving messages from the merge process) has poor lookahead situations where one of the secondary servers has poor lookahead. In
properties, perfonnance is almost as poor as when all of the sarvers have particular, good performance is obtained if a significant fraction of the
poor loolcahead. When one of the secondary servers (the servers receiving message traffic (S0 to 90 percent) is routed around the process with poor
messages from the fork process) has poor lookalsead. performance is lookahead. Unlike the deadlock detection and recovery simulator. null
better, but still well below that of the simulator using only optimized message traffic is generated by the classical server to allow the merge
servers. Thiese results are consistent with those obtained using synthetic process to proceed. Because processes with poor lookahead tend to buffer
workloads, and demonstrate that a few processes with poor lcxrkahead ca messages rather than immediately forwarding them, it is best to minimize
significantly degrade overall performance in the deadlock detection and the amount of traffic routed to the classical server because this onl%
recovery simulator, detracts from the available parallelism.

When the classical propuan was used to implement a secondary server, 7. Communication Network Simulations
the routing probabilities in the fork were modified so that 10, 50. and
finally 90 percent of the message traffic was routed to the classical server. Simulations of the message passing subsystem of a hypothetical
It is interesting to note that performance improves as moare traffic is routed multicomputer were also performed. The multicomputer is organized in a
toward the server with poor lookahead. If little traffic is directed toward hypercube topology, and Sullivan's algorithm is used to route messages to
this server, the simulator is constantly deadlocking because the merge their respective destinations (Su[177a]. Like the queueing network and
process is forced to black because it cannot determine whether or noot it is synthetic workload experiments, a fixed message population was used to
safe to proceed without first receiving a message from this server. Routing control the amnount of available parallelism. Initially, each message is
additional message traffic toward this server helps the simulator to assigned a destination to which it is to be routed, and a message length.
overcame (somewhat) the server's poor lookahead characteristics. The destination is selected from a uniform distribution (excluding the
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Figure 12. Speedup of deadlock avoidance simulator ith one classical server. Figure 13. Overhead of deadlock avoidance simulator with one classical servler

processor where the message initially resides), and the message length is 7.4 Performance Results
selected from an exponential distribution. When a message reaches its
final destination, a new destination and message length are selected. All The hypercube simulations were performed on the Butterfly, and
communication links in the hypercube are assumed to provide the same compared with execution of the sequential event list implementation.
bandwidth. Three simulators were developed that contain varying degrees Unlike the previous experiments, these were performed on the Buuerfly
of lookahead, as will be described next. Plus, an upgraded version of the Butterfly that features 32 bit data vaths

(the original Butterfly has 16 bit data paths). The switch remains the same,
7.1 A Simulator with Hih Lookahead so this effectively increases the cost of interprocessor communications.

FCFS is a simulator in which messages are simply forwarded on the Becuse. the simulation testbed already minimizes interprocessor

output link selected by the routing algorithm in FCFS order. Like the communication, no program modifications were required. Experiments

FCFS queueing network described earlier, this simulator has great indicated that this hardware modification did not significantly affect the

lookahead ability because messages arriving at a logical process (with speedup measures derived earlier.

timestamp denoting the arrival time in the hypercube) can be immediately Overhead for these three simulators is shown in figures 14 and 15 for
forwarded. hypercubes of dimensions 4 and 6 (16 and 64 nodes respectively). Eight

processors were used in these experiments. Upon reaching its destination.
7.2 A Simulator with Moderate Lookahead each message is assigned a high priority with probability Pk-. In .hese

PRIO is a simulator with intermediate lookahead properties. Here, experiments. P, was selected to be either 0.01 or 0.50.

messages are classified as either high priority or low priority. As predicted, the observed overhead steadily increases as the lookahcad
Communication links in the hypercube give preference to high priority properties of the simulation are diminished. This is reflected in higher null
messages when selecting the next message to be transmitted. A low message ratios in the deadlock avoidance simulator, and a larger message
priority message is only forwarded if there are no high priority messages population required to induce avalanche in the detection and recovery
waiting to use the link. Messages within each priority level are processed simulator. Overheads are generally lower in the dimension four hypercube
in FCFS order. Each message is assigned a new priority whenever a new than the cube of dimension six for a fixed message population (as
destination address and message length are selected and maintains this measured in messages per process) because there are fewer
priority until it reaches the destination processor. communication links; the simulators operate at peak efficiency when there

No preemption occurs in this simulator. Once the link begins is at least one message on each incoming link because no blocking occurs.
forwarding a low priority message, it will continue to send it, even if a The lookahead properties of the simulator increase as Ph,,. increases
high priority message arrives before transmission is complete. because more high priority messages are generated that can be forwarded

The parallel simulator for this system has intermediate lookahead as soon as they are received. This explains the lower overheads that were
properties. Logical processes have excellent lookahead for high priority observed when Ph.. was increased.
messages, but poorer lookahead for those with low priority. Just as is the Speedup curves for the hypercube simulators are shown in figures 16
case for the FCFS simulator, high priority messages can be forwarded as and 17. Using eight processors, the parallel simulator executed anywhere
soon as they arrive because the departure time can be immediately from 5.7 times faster to nearly 20 times slower than the splay tree
determined. However, a low priority message cannot be forward until simulator, depending on the lookahead properties of the application. Some
simulated time in the logical process has advanced to the departure time data points for very high message populations are missing because
(the time the hypercube begins sending the message) because it must first insufficient memory was available on a single processor to conduct an
be determined that no high priority message will receive service ahead of event list simulation.
iL The hypercube simulations provide additional evidence to support our
7.3 A Simulator with Poor Lookshed contention that lookahead properties of the application are crucial to

obtaining efficient performance for simulators using the deadlock
The third simulator, PREEMPT, is identical to the PRIORITY simulator avoidance and deadlock detection and recovery strategies. While the

except that high priority messages preempt service of low priority queueing network simulations demonstrated that it is possible to obtain
messages. When a low priority message is preempted, it is assumed that dramatic speedups by reprogramming the simulation to fully exploit its
the message must be completely resent once no other high priority lookahead properties, these experiments demonstrate that some simulations
messages remain that are waiting to use the link. The simulator for this inherently contain poor lookahead, and cannot be improved by
system cannot forward a message to another logical process until simulated reprogramming. Such simulations appear to be poorly suited for the
time has advanced to the arrival time (the time the tail of the message conservative simulation algorithms using deadlock avoidance and
reaches the receiving hypercube node), so it has even poorer lookahead deadlock detection and recovery techniques, except in a few special
properties than the preceding simulator. circumstances such as networks that contain no feedback loops.
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8. A Perspective on Lookahead: Non.Events In the deadlock avoidance simulator, knowledge of non-events is passed

The influence of lookahead on performance can be viewed from another explicitly through the use of null messages. In the deadlock detection and
perspective: processes with very good lookahead ability are able to act in a recovery simulator, this information is obtained by system deadlock -
largely autonomous fashion; their behavior is not heavily influenced by the processes with messages waiting to be processed must wait until they can
activities of other processes, so they can perform simulation work at "full be certain that specific events will not occur. Certainty as to the
speed," limited only by the rate at which they can be fed work, and the eventuality of non-events comes about when the deadlock is broken, and
number of CPU cycles (or other resources) that they can obtain. The the deadlock resolution protocol is invoked. Sequential, event list
optimized queueing network server process is a good example of such simulators incur little or no overhead for non-events.
autonomous behavior. If non-events are possible, but occur infrequently, the simulator is often

On the other hand, processes with poor lookahead ability must forced to wait needlessly, leading to very poor performance. The
frequently obtain additional information from other processes before they hypercube simulator containing preemption and few high priority messages
can safely proceed. This is unfortunate because not only must such is one example of such behavior. Optimistic simulation methods such as
processes wait for real events to be generated by other processes Time Warp appear to offer the greatest potential for addressing this
(corresponding to data dependencies that cannot be circumvented), but problem, if the associated state saving and rollback overheads can be
often they must also wait to be sure other events will not occur. The tact overcome.
that an airplane will not crash and close the airport in the next moment of
simulated time must be discovered before the airport process can go about 9. Conclusions
its business of deciding what wIll happen next. We call these "phantom" Extensive empirical performance evaluations of distributed simulation
events that never materialize non-events. Chandy and Misra recently programs were performed using the deadlock avoidance and deadlock
captured these notions in an elegant formalism called condit nal and detection and recovery algorithms developed by Chandy and Misra. The
unconditional knowledge (Chan87a]. principal results of these studies are:
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